Science and policy characteristics of the Paris Agreement temperature goal

The Paris Agreement sets a long-term temperature goal of holding the global average temperature increase to well below 2 °C, and pursuing efforts to limit this to 1.5 °C above pre-industrial levels. Here, we present an overview of science and policy aspects related to this goal and analyse the implications for mitigation pathways. We show examples of discernible differences in impacts between 1.5 °C and 2 °C warming. At the same time, most available low emission scenarios at least temporarily exceed the 1.5 °C limit before 2100. The legacy of temperature overshoots and the feasibility of limiting warming to 1.5 °C, or below, thus become central elements of a post-Paris science agenda. The near-term mitigation targets set by countries for the 2020–2030 period are insufficient to secure the achievement of the temperature goal. An increase in mitigation ambition for this period will determine the Agreement's effectiveness in achieving its temperature goal.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Wave of net zero emission targets opens window to meeting the Paris Agreement

Article 16 September 2021

Ratcheting of climate pledges needed to limit peak global warming

Article 10 November 2022

Paris Climate Agreement passes the cost-benefit test

Article Open access 27 January 2020

References

  1. United Nations Framework Convention on Climate Change (UNFCCC, 1992).
  2. Knutti, R., Rogelj, J., Sedláček, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nature Geosci.9, 13–18 (2015). ArticleCASGoogle Scholar
  3. Adoption of the Paris Agreement FCCC/CP/2015/10/Add.1 (UNFCCC, 2015).
  4. Hare, W. L., Cramer, W., Schaeffer, M., Battaglini, A. & Jaeger, C. C. Climate hotspots: key vulnerable regions, climate change and limits to warming. Reg. Environ. Change11, 1–13 (2011). ArticleGoogle Scholar
  5. IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) (Cambridge Univ. Press, 2001).
  6. Smith, J. B. et al. Assessing dangerous climate change through an update of the intergovernmental panel on climate change (IPCC) “reasons for concern”. Proc. Natl Acad. Sci. USA106, 4133–4137 (2009). ArticleCASGoogle Scholar
  7. Oppenheimer, M. et al. in Climate Change: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1039–1099 (IPCC, Cambridge Univ. Press, 2014). Google Scholar
  8. IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K. & Reisinger, A.) (Cambridge Univ. Press, 2007).
  9. Submissions from Parties FCCC/KP/AWG/2009/MISC.1/Add.1 (UNFCCC, 2009).
  10. The Copenhagen Accord FCCC/CP/2009/11/Add.1 (UNFCCC, 2009).
  11. The Cancun Agreements FCCC/CP/2010/7/Add.1 (UNFCCC, 2010).
  12. Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).
  13. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature529, 477–483 (2016). ArticleCASGoogle Scholar
  14. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
  15. IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).
  16. Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nature Clim. Change4, 161–163 (2014). ArticleGoogle Scholar
  17. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Clim. Change5, 560–564 (2015). ArticleGoogle Scholar
  18. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nature Geosci.7, 716–721 (2014). ArticleCASGoogle Scholar
  19. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim.26, 3904–3918 (2013). ArticleGoogle Scholar
  20. Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Climatic Change132, 501–515 (2015). ArticleGoogle Scholar
  21. Schleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam.7, 327–351 (2016). ArticleGoogle Scholar
  22. Sedláček, J. & Knutti, R. Half of the world's population experience robust changes in the water cycle for a 2 °C warmer world. Environ. Res. Lett.9, 044008 (2014). ArticleGoogle Scholar
  23. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA111, 3245–3250 (2014). ArticleCASGoogle Scholar
  24. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA111, 3268–3273 (2013). ArticleCASGoogle Scholar
  25. McGrath, J. M. & Lobell, D. B. Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ. Res. Lett.8, 014054 (2013). ArticleCASGoogle Scholar
  26. Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nature Clim. Change4, 817–821 (2014). ArticleCASGoogle Scholar
  27. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nature Clim. Change4, 287–291 (2014). ArticleGoogle Scholar
  28. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA111, 3239–3244 (2013). ArticleCASGoogle Scholar
  29. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Commun.5, 3858 (2014). ArticleCASGoogle Scholar
  30. Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett.9, 034011 (2014). ArticleGoogle Scholar
  31. Nelson, G. C. et al. Agriculture and climate change in global scenarios: why don't the models agree. Agric. Econ.45, 85–101 (2014). ArticleGoogle Scholar
  32. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature529, 84–87 (2016). ArticleCASGoogle Scholar
  33. Asseng, S. et al. Rising temperatures reduce global wheat production. Nature Clim. Change5, 143–147 (2015). ArticleGoogle Scholar
  34. Pörtner, H.-O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (Field, C. B. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014). Google Scholar
  35. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science349, aac4722 (2015). ArticleCASGoogle Scholar
  36. Meissner, K. J., Lippmann, T. & Sen Gupta, A. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs31, 309–319 (2012). ArticleGoogle Scholar
  37. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Clim. Change3, 165–170 (2013). ArticleGoogle Scholar
  38. Hezel, P. J., Fichefet, T. & Massonnet, F. Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs. Cryosphere8, 1195–1204 (2014). ArticleGoogle Scholar
  39. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature527, 235–239 (2015). ArticleCASGoogle Scholar
  40. Mathesius, S., Hofmann, M., Caldeira, K. & Schellnhuber, H. J. Long-term response of oceans to CO2 removal from the atmosphere. Nature Clim. Change5, 1107–1113 (2015). ArticleCASGoogle Scholar
  41. Schewe, J., Levermann, A. & Meinshausen, M. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise. Earth Syst. Dynam.2, 25–35 (2011). ArticleGoogle Scholar
  42. Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim. Change6, 360–369 (2016). ArticleGoogle Scholar
  43. Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosci.9, 649–665 (2012). ArticleCASGoogle Scholar
  44. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA110, 13745–13750 (2013). ArticleCASGoogle Scholar
  45. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science349, aaa4019 (2015). ArticleCASGoogle Scholar
  46. Mace, M. J. Mitigation commitments under the Paris Agreement and the way forward. Clim. Law6, 21–39 (2016). ArticleGoogle Scholar
  47. Decision IPCC/XLIII-7 (IPCC, 2016).
  48. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014). Google Scholar
  49. IPCC Climate Change 2014: Synthesis Report (Cambridge Univ. Press, 2014).
  50. Mastrandrea, M. D. et al. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Climatic Change108, 675–691 (2011). ArticleGoogle Scholar
  51. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim. Change5, 519–527 (2015). ArticleGoogle Scholar
  52. Statement of the CVF Chair at the UNFCCC COP21 Ministerial Dialogue on the Long-Term Goal (Climate Vulnerable Forum, 2015); http://go.nature.com/29DRiRy
  53. Rogelj, J. et al. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett.10, 105007 (2015). ArticleCASGoogle Scholar
  54. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014)
  55. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nature Clim. Change6, 245–252 (2016). ArticleGoogle Scholar
  56. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change109, 213–241 (2011). ArticleCASGoogle Scholar
  57. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change4, 850–853 (2014). ArticleCASGoogle Scholar
  58. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nature Clim. Change6, 42–50 (2015). ArticleCASGoogle Scholar
  59. Williamson, P. Scrutinize CO2 removal methods. Nature530, 153–155 (2016). ArticleCASGoogle Scholar
  60. Obersteiner, M. et al. Managing climate risk. Science294, 786–787 (2001). ArticleCASGoogle Scholar
  61. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change123, 353–367 (2014). ArticleGoogle Scholar
  62. Lobell, D. B. & Tebaldi, C. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett.9, 074003 (2014). ArticleGoogle Scholar
  63. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy7, 916–944 (2014). ArticleCASGoogle Scholar
  64. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (Edenhofer, O. et al.) Ch. 11 (IPCC, Cambridge Univ Press, 2014). Google Scholar
  65. Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Pol.39, 5690–5702 (2011). ArticleGoogle Scholar
  66. Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ.45, 103–116 (2014). ArticleGoogle Scholar
  67. Riahi, K. et al. Locked into Copenhagen Pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change90A, 8–23 (2013). Google Scholar
  68. The Emission Gap Report 2015: A UNEP Synthesis Report (UNEP, 2015).
  69. Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim. Change3, 405–412 (2013). ArticleCASGoogle Scholar
  70. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions FCCC/CP/2015/7 (UNFCCC, 2015).
  71. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature534, 631–639 (2016). ArticleCASGoogle Scholar
  72. Jaeger, C. C. & Jaeger, J. Three views of two degrees. Reg. Environ. Chang.11, 15–26 (2011). ArticleGoogle Scholar
  73. Schellnhuber, H. J. Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nature Clim. Change6, 649–653 (2016). ArticleGoogle Scholar
  74. Rogelj, J. & Knutti, R. Geosciences after Paris. Nature Geosci.9, 187–189 (2016). ArticleCASGoogle Scholar
  75. Mitchell, D. et al. Realizing the impacts of a 1.5 °C warmer world. Nature Clim. Change6, 735–737 (2016). ArticleGoogle Scholar
  76. James, R. & Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Climatic Change117, 859–872 (2013). ArticleGoogle Scholar
  77. Hallegatte, S. et al. Mapping the climate change challenge. Nature Clim. Change6, 663–668 (2016). ArticleGoogle Scholar
  78. Chadwick, R. & Good, P. Understanding nonlinear tropical precipitation responses to CO2 forcing. Geophys. Res. Lett.40, 4911–4915 (2013). ArticleGoogle Scholar
  79. Hawkins, E., Joshi, M. & Frame, D. Wetter then drier in some tropical areas. Nature Clim. Change4, 646–647 (2014). ArticleGoogle Scholar
  80. Bouttes, N., Gregory, J. M. & Lowe, J. A. The reversibility of sea level rise. J. Clim.26, 2502–2513 (2013). ArticleGoogle Scholar
  81. Schleussner, C.-F., Levermann, A. & Meinshausen, M. Probabilistic projections of the Atlantic overturning. Climatic Change127, 579–586 (2014). ArticleGoogle Scholar
  82. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA112, 43 (2015). ArticleCASGoogle Scholar
  83. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica. Science344, 735–738 (2014). ArticleCASGoogle Scholar
  84. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett.41, 3502–3509 (2014). ArticleGoogle Scholar
  85. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Clim. Change4, 117–121 (2014). ArticleGoogle Scholar
  86. Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA112, 14191–14196 (2015). ArticleCASGoogle Scholar
  87. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change4, 451–455 (2014). ArticleGoogle Scholar
  88. Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett.41, 4601–4610 (2014). ArticleGoogle Scholar
  89. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature485, 225–228 (2012). ArticleCASGoogle Scholar
  90. Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change122, 373–386 (2014). ArticleGoogle Scholar
  91. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science347, 1259855 (2015). ArticleCASGoogle Scholar
  92. Lomax, G., Lenton, T. M., Adeosun, A. & Workman, M. Investing in negative emissions. Nature Clim. Change5, 498–500 (2015). ArticleGoogle Scholar
  93. Meinshausen, M. et al. National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Clim. Change5, 1098–1106 (2015). ArticleGoogle Scholar
  94. Edenhofer, O. King Coal and the queen of subsidies. Science349, 1286–1287 (2015). ArticleCASGoogle Scholar
  95. The Coal Gap: Planned Coal-Fired Power Plants Inconsistent with 2 °C and Threaten Achievement of INDCs (Climate Action Tracker, 2015).
  96. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature525, 367–71 (2015). ArticleCASGoogle Scholar
  97. Rogelj, J. et al. Air-pollution emission ranges consistent with the representative concentration pathways. Nature Clim. Change4, 245–252 (2014). ArticleCASGoogle Scholar
  98. Hulme, M. 1.5 °C and climate research after the Paris Agreement. Nature Clim. Change6, 222–224 (2016). ArticleGoogle Scholar
  99. INDCs Lower Projected Warming to 2.7 °C: Significant Progress But Still Above 2 °C (Climate Action Tracker, 2015).

Acknowledgements

We acknowledge the work by IAM modellers that contributed to the IPCC AR5 Scenario Database and the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP. We thank the climate modelling groups for producing and making available their model output, and the International Institute for Applied System Analysis for hosting the IPCC AR5 Scenario Database. For CMIP, the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We would like to thank the modelling groups that participated in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and the Potsdam Institute for Climate Impact Research for hosting the database. The work was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11_II_093_Global_A_SIDS and LDCs), within the framework of the Leibniz Competition (SAW-2013-PIK-5), from EU FP7 project HELIX (grant no. FP7-603864-2) and by the German Federal Ministry of Education and Research (BMBF; grant no. 01LS1201A1). J.R. received funding from the EU's Horizon 2020 research and innovation programme under grant agreement no. 642147 (CD-LINKS).

Author information

Authors and Affiliations

  1. Climate Analytics, 10969, Berlin, Germany Carl-Friedrich Schleussner, Michiel Schaeffer, Tabea Lissner & William Hare
  2. Potsdam Institute for Climate Impact Research, Potsdam, 14473, Germany Carl-Friedrich Schleussner, Tabea Lissner, Anders Levermann, Katja Frieler & William Hare
  3. Energy Program, International Institute for Applied Systems Analysis, Laxenburg, 2361, Austria Joeri Rogelj
  4. Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, 8092, Switzerland Joeri Rogelj, Erich M. Fischer & Reto Knutti
  5. Environmental Systems Analysis Group, Wageningen University and Research Centre, 6708 PB, Wageningen, the Netherlands Michiel Schaeffer
  6. Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, 08544, New Jersey, USA Rachel Licker
  7. Institute of Physics and Astronomy, University of Potsdam, Potsdam, 14476, Germany Anders Levermann
  8. Lamont-Doherty Earth Observatory, Columbia University, 10964-1000, New York, USA Anders Levermann
  1. Carl-Friedrich Schleussner